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Figure 1: Illustration of BNS 
frequency-domain 
waveforms before (blue) and 
after (orange) heterodyning. 
Waveforms are truncated at 
100Hz for better illustration. 
Black dots denote the 
frequency nodes of the 
multibanding scheme: the 
bands are defined between 
nodes.

• Future: Third-generation (3G) GW detectors networks, including Einstein 
Telescope (ET) and Cosmic Explorer (CE), are expected to detect >10⁵
BNS events per year [1] with extended duration up to hours starting from
~5Hz and with increased signal-to-noise ratio (SNR).

• Problem: PE for long-duration, high-SNR events using stochastic
sampling is prohibitively slow. [2-3] investigated into subsets of the task
(ignoring the Earth rotation or ignoring precession), requiring >1000 CPU
hours per event. In this way, PE alone would cost millions of dollars in
electricity charges per year, and it is not environmentally friendly!

• Solution: Machine learning is proven to be a promising way of fast PE [4].
In this work, we train neural density estimators based on normalizing flows
to infer BNS source parameters and EOS rapidly with minimal hardware
and time costs, enabling catalog-level analysis for long BNS signals.
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Abstract & Take-away:
- We demonstrate the feasibility of analyzing 3-hour-long GW data from BNS with machine learning, achieving full parameter

estimation (PE) and constraining the equations of state (EOS) of neutron stars within O(1) seconds. 
- We employ multi-banding and heterodyning for data preprocessing, and normalizing flows for PE and EOS inference. The 

results are validated against analytical predictions since full PE for such long signals is prohibitively slow. 

• Why: Duration=12000s and frequency band 5-1024Hz -> 12M data points.
Effective data compression is crucial to analysis of such long data.

• Multibanding: adaptively selects frequency nodes and resolutions based
on the frequency evolution of CBC sources, ensuring that each band’s 
resolution is precisely tuned to the needs of BNS signals. 12M->6000 data
points, compression ratio ~ 2000.

• Heterodyning: BNS waveform is highly oscillatory, making data
compression inefficient. Following [5], we heterodyne the signal to reduce
the oscillations.

• For parameter estimation, we first extract the principal components of
the preprocessed data by SVD and use an embedding network to further
compress the data. We tried two types of embedding networks: MLP
Residual Network (MLPResNet) and Transformer (ViT). The data is then
used by a conditional normalizing flow to generate posterior samples.

• For equations of state, following [6], we train an independent
normalizing flow conditioned on the BNS mass and tidal parameters to
infer a compact form of EOS, which can be converted to the original EOS
by an autoencoder.

• Prior: 1ET + 2CE network + stationary Gaussian noise at their design
sensitivities. We ignore signal overlaps. SNR range is set to 20-50.
Detector frame chirp mass 2-2.1𝑀⊙, which corresponds to ~1.4𝑀⊙ in the
source frame. A higher SNR model is still being trained.

• Training: >60 million intrinsic parameters, random extrinsic parameters.
• Speed: Models with different embedding layers give consistent results

(Fig.3 left). It takes ~0.2s to generate 5000 samples on RTX 3080.
• Precision: since full PE is prohibitively slow, we compare statistical errors

with Fisher matrix forecast and compare skymaps with a fast localization
algorithm SealGW [7]. The width of their statistical errors mostly agree
(Fig.3 top right). A potential issue: Fisher matrix may not be accurate for
the 17D problem.

• Accuracy: We present the p-p plot and p-values in Fig.3 lower right.
• Future work: Higher SNR, overlapping signals, noise variations…

Figure 4: We present 50% and 90% confidence 
intervals (CIs) in dark blue and light blue 
respectively, as determined by the autoencoded 
latent space representation of the EOS and 
presented here as pressure as a function of 
density. The injected EOS is given in dark blue 
with the training prior bounds given in grey, 
illustrating the most stiff and most soft EOSs in 
our training data set.
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Figure 3: Parameter estimation results. Left： An example corner plot. Blue contours represent the model with MLPResNet
embedding while the red represents ViT embedding. Top right: Ratios between the statistical errors given by flow models and
given by Fisher matrix/SealGW. The dashed line indicates the location where flow models perfectly match analytical results.
Lower right: The p-p plot of the ViT-embedding model with p-values shown. The MLPRestNet model gives similar results.
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Figure 2: The structure of our neural networks.

• Training: Following [6], a normalizing flow was trained on a compressed 
set of EOS from CUTER [8] consisting of a meta-model + piecewise 
polytrope structure. These EOS were compressed to a 12D 
representation by a convolutional autoencoder.

• Injection test: Given a true EOS, a BNS event was simulated and PE
was performed. The posterior samples were then passed to the 
normalizing flow to generate an EOS posterior. This was decoded into a 
pressure-density relationship using the autoencoder (Figure 4).

• Future work: combine multiple events with our workflow…


