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BNS challenges in 3G
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• BNS signals can last for hours in 3G detectors (starting from 5Hz)
• We are expecting >200k BNS events per year in 3G era
• How challenging?

• A dedicated ROQ-based parameter estimation (PE) cost 1600 CPU hours
(PRL. 127 2021 8, 081102), not including the Earth rotation effects

• Inferring equation of state (EOS) also involves stochastic sampling, which
takes O(1)-O(10) hours

• What is the cost? Optimistically assuming 1000 CPU hours to process each 
event (PE+EOS) and 150W CPU power, the 200k BNS will cost (per analysis 
run)

• 200 million CPU hours
• 30 GWh of electricity 
• 4.8 million USD in electricity charges



Machine learning based pipeline
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Normalizing flow
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• Learn an invertible and differentiable transformation between a target distribution
and a Gaussian distribution 𝑝(𝑡𝑎𝑟𝑔𝑒𝑡) ↔ 𝑝 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

• Can be conditioned on data: learning 𝑝 𝑡𝑎𝑟𝑔𝑒𝑡|𝑑𝑎𝑡𝑎 ↔ 𝑝(𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛|𝑑𝑎𝑡𝑎)

• During inference, samples can be easily drawn from the Gaussian distribution and
mapped to data space -> samples of GW parameters
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Example parameter estimation
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• 1.7+1.6 solar mass at 2500
Mpc, SNR=40

• Takes ~0.3s to generate 5000
samples

• Can constrain source
parameters

• Can model degeneracy
between parameters

• Crosscheck: models with
different embedding layers give
consistent results



Model validation
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• Full PE is prohibitively slow, so we assess our PE models by precision and
accuracy

• Precision: compared with Fisher matrix and SealGW (a fast localization algorithm
– check out my poster!)

• Accuracy: p-p plot



Inferring equations of state
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• Posterior samples from PE can be used to infer EOS of neutron stars
• EOS: relation between pressure and density of neutron star matter – without

GW it is hard to probe into the dense core!
• We infer the compressed expression of the EOS based on GW PE samples –

using normalizing flows!



Example EOS constraint
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• Simulated two BNS with same
underlying EOS but different
SNRs: 39 and 390

• We can obtain EOS constraint
within 1s!

• High SNR gives tighter
constraint as expected



Reduced cost
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• Before: Optimistically assuming 1000 CPU hours to process each event 
(PE+EOS) and 150W CPU power, the 200k BNS will cost (per analysis run)

• 30 GWh of electricity, 4.8 million USD in electricity charges
• What is the cost now? Assuming 1s sampling time and 1min pre- and post- 

processing CPU time for PE+EOS analysis per event. Assume 500 models are
needed to cover the entire parameter space each taking 2 weeks training

• Inference: 508 kWh, costing approximately 81 USD
• Training: 25.2 MWh and 4k USD
• Total: 25.7 MWh and 4.1k USD
• Less than 1/1000 of the original cost!



Summary
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• Normalizing flow based analysis
pipeline for full PE (precession
and earth rotation included) and
EOS inference for long BNS
signals in 3G

• Validated against Fisher matrix
and SealGW because full PE is
too expensive

• Energy cost: less than 1/1000 of
traditional method for expected
3G catalog





GW data compression
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Preprocessing

• 5Hz-1024Hz band, 1.1+1.1Msun –> 12 million data points
• Multibanding:

• You don’t need high sampling rate in low frequency band
• Adaptively choosing frequency resolution: 12 million -> 6000

• Heterodyning (relative binning)
• BNS waveform in frequency domain is highly oscillatory

• Multiplying the signal with the inverse of dominate oscillation term 𝑒!
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GW data compression
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Compression: linear and non-linear

• After multibanding and heterodyning, GW data is short and (relatively) smooth
• We use singular value decomposition (SVD) to extract the linear projections of the

data: 6000->128
• We use neural networks to combine different data streams (1 triangular ET + 2 CEs)

and compress them: 128*5*2 (data is complex) -> 128 real numbers
• Residual network of multi-layer perceptron (MLPResNet)
• Vision Transformer (ViT)



Training
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• Training set should be a comprehensive representation of the parameter space,
similar to a template bank generation

• Challenging in high SNR case, low masses, and high dimensions – We meet
all three factors!

• Large training set is required
• We restrict our prior to reduce training set

• Low SNR model (SNR 20-50), chirp mass 2-2.1 solar masses in detector
frame, isotropic spin, magnitude < 0.05, random simulating extrinsic
parameters during training -> 64 million intrinsic parameters needed

• High SNR model (SNR 200-500), chirp mass 1.3-1.31 solar masses in
detector frame, same settings for other parameters -> 100 million intrinsic
parameters needed

• Training takes 2-3 weeks on a large GPU



Prior conditioning
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• The chirp mass for heterodyning is unknown during inference
• Following DINGO-BNS, we train our model to adapt to small inaccuracies in the

chirp mass used for heterodyning
• During inference, we can divide chirp mass space into several segments and

perform PE for each. Then choose the one with the maximum likelihood



The Earth rotation effects
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• Earth rotation -> changes in response functions of GW detectors
• Encodes information of source location
• For long signals, the Earth rotation’s effects need to be considered



3G PE cost
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In prep



EOS training data
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• The EOS for training is sourced from CUTER (Davis+ 2024), which consists of a
meta-model and piecewise polytrope structure

• We sample polytrope parameters to generate EOS, for each EOS we solve TOV
equation to generate source parameters (masses and Lambdas).

• The source parameters and compressed EOS are used to train the flow model
• During inference, the flow simply takes the source parameters from PE and

generate compressed EOS


