ET-0211A-22 Contact: q.hu.2@research.gla.ac.uk

Systematic error accumulation in testing GR with ET

Qian Hu and John Veitch @ University of Glasgow ET-osb-da Telecon 10 Oct 2022

Overview

Predicting systematic errors in PE: overlap signals and inaccurate waveforms

□ Mock catalog for ET

Systematic error accumulation – using parameterized post-Newtonian (PPN) coefficients tests of GR as an example

Excess strains

Where systematic errors originate (arXiv:0707.2982, 2104.01897)

Likelihood in PE: assuming noise is stationary and Gaussian, and d-h=n

$$\ln L(\vec{ heta}) = -rac{1}{2}(d-h|d-h) = -rac{1}{2}(n|n),$$

• Maximum likelihood (ML) estimator:

$$\partial_i \ln L \mid_{ec{ heta} = ec{ heta}_{ ext{ML}}} = (\partial_i h | d - h) \mid_{ec{ heta} = ec{ heta}_{ ext{ML}}} = 0,$$

• The statistical error caused by noise:

$$\Delta heta^i_{
m stat} pprox (\Gamma^{-1})^{ij} (\partial_j h_{
m m} | n)$$
 $< \Delta heta^i_{
m stat} \Delta heta^j_{
m stat} >= 0$ Unbiased
 $< \Delta heta^i_{
m stat} \Delta heta^j_{
m stat} >= (\Gamma^{-1})^{ij}$ Fisher matrix forecast

• If there are strains other than noise $(d-h=n+\delta H)$, the ML will be biased:

$$\Delta \theta_{\rm sys}^i = (\Gamma^{-1})^{ij} (\partial_j h_{\rm m} | \delta H)$$

Our concerns

$$\Delta \theta_{\rm stat}^i \approx (\Gamma^{-1})^{ij} (\partial_j h_{\rm m} | n) \qquad \Delta \theta_{\rm sys}^i = (\Gamma^{-1})^{ij} (\partial_j h_{\rm m} | \delta H)$$

- Waveform systematics: $\delta H_{waveform} = h_{real} h_{model}$
- Overlap signals:
 - Detected overlaps: $\delta H_{do} = h'_{real}(\theta_{true}) h'_{model}(\theta_{ML}) \approx \Delta \theta'^{i}_{stat} \partial_{i} h'_{m} + \delta H'_{waveform}$
 - Undetected overlaps (SNR<8): $\delta H_{uo} = h''_{real}(\theta_{true})$
- $\Delta \theta_{stat}^i \propto 1/SNR$, $\Delta \theta_{sys}^i$ doesn't. When SNR increases, systematic errors may dominate
- Different types of systematic errors may have impacts on each other

PPN, waveforms, and parameters $\underbrace{\textcircled{}}_{\textit{of Glasgow}}$ University $\underbrace{\textcircled{}_{\textit{GR}}}_{\textit{GR}}$

- Parametrized post-Newtionial (PPN) coefficient tests of GR:
 - IMRPhenomPv2 phase is characterized by a set of parameters $\{p_i\}$
 - Inspiral regime parameters: $\{\varphi_0, ..., \varphi_7\}, \{\varphi_{5l}, \varphi_{6l}\}$ $\varphi_{PN}(f) = 2\pi f t_c \varphi_c \frac{\pi}{4} + \frac{3}{128\eta} (\pi \tilde{f})^{-5/3} \sum_{i=0}^7 [\varphi_i + \varphi_{il} \log(\pi \tilde{f})] (\pi \tilde{f})^{i/3}$.
 - Phenomenological coefficients: $\{\beta_0, ..., \beta_3\}$
 - Merger-ringdown parameters: $\{\alpha_0, ..., \alpha_5\}$
 - $p_i \rightarrow (1 + \delta \hat{p}_i) p_i$, the $\delta \hat{p}_i$ is the testing parameter. $\delta \hat{p}_i = 0$ returns to GR
- We choose $\delta \widehat{\varphi_0}$ as an example testing parameter in this work
- We perturbate $\delta \hat{\beta}_2$ as the inaccurate waveform parameter:
 - $\delta \widehat{\beta_2} = 0$: model waveform
 - $\delta \hat{\beta}_2 = 5 \times 10^{-2}$: "real" waveform for current waveform modelling, mismatch ~ $10^{-4} 10^{-3}$
 - $\delta \hat{\beta}_2 = 5 \times 10^{-4}$: "real" waveform for future waveform modelling, mismatch ~ $10^{-7} 10^{-6}$
- Parameters in GR: chirp mass, mass ratio, merger time. Other parameters are set to be perfectly known

Catalog simulation

• We use an analytical approximation for merger rate density (Oguri 2018)

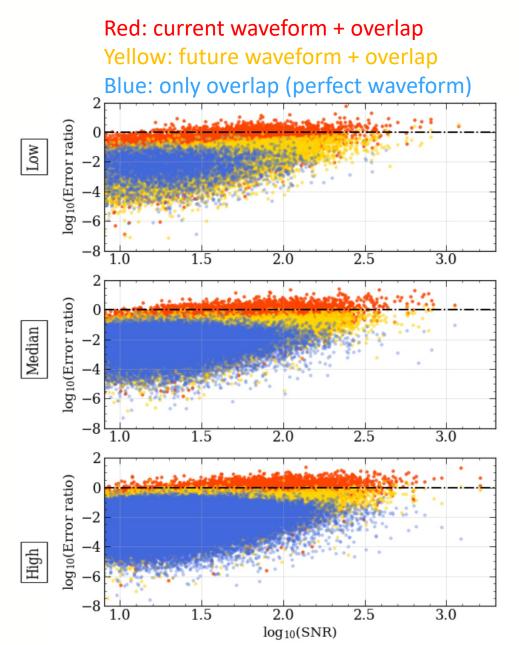
$$\frac{R_{\rm GW}(z)}{{\rm Gpc}^{-3}{\rm yr}^{-1}} = \frac{a_1 e^{a_2 z}}{e^{a_3 z} + a_4}, \qquad \qquad R_{\rm GW}^{\rm obs}(z) = R_{\rm GW}(z) \frac{dV_c}{dz}(z).$$

- According to local merger rate estimation, we scale a_1 to generate different merger rates: low, median, high
- BBH
 - mass: power law + peak model in GWTC-2 population inference
 - zero spin
- BNS
 - All BNS have the same intrinsic parameters
 - 1.45+1.4 solar mass, zero spin, tidal deformability parameter=425
- Isotropic inclination and sky direction
- We will test GR with all BBH events. BNS only appears as overlap background

Catalog simulation

BBH and BNS: summary

Overlap:= $|\Delta t| < 4s$

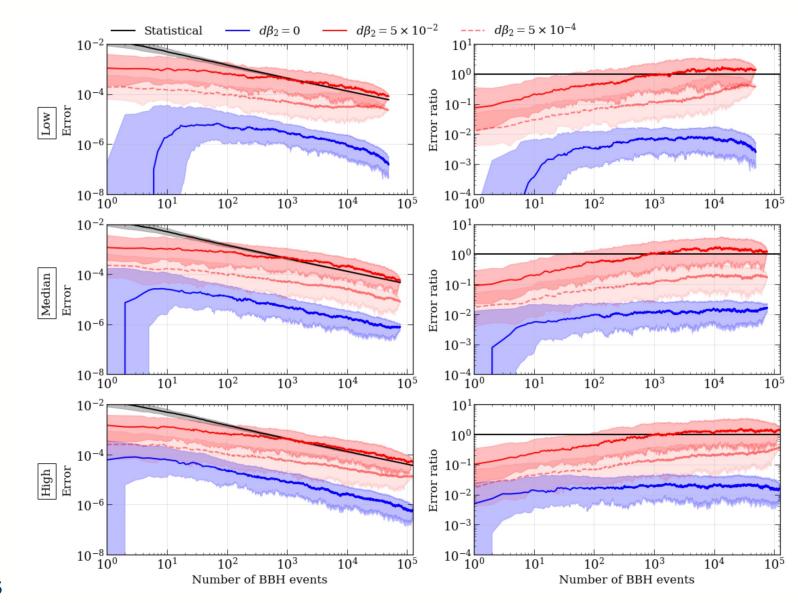

(per year)

	# of observable binaries		Detected overlaps on BBH events		Undetected overlaps on BBH events	
	BBH	BNS	# of overlaps	# (fraction) of events	# of overlaps	# (fraction) of events
Low	56526	286088	0	48380 (98%)	0	45991~(93%)
			1	937~(1.9%)	1	3217~(6.5%)
			2	11 (0.022%)	2	119~(0.24%)
					3	1~(0.0020%)
Median	88300 th ~80000 SN	1144354 NR>8)	0	$73224 \ (95\%)$	0	58921~(77%)
			1	3574~(4.6%)	1	15658~(20%)
			2	74 (0.096%)	2	2108 (2.7%)
			3	1 (0.0010%)	3	174~(0.23%)
(wi					4	10 (0.013%)
					5	2~(0.0030%)
High	143349	2896647	0	112745 (90%)	0	63932~(51%)
			1	11496 (9.2%)	1	42931 (34%)
			2	589~(0.47%)	2	14143 (11%)
			3	19 (0.015%)	3	3208~(2.6%)
					4	540~(0.43%)
					5	86~(0.069%)
					6	6~(0.0050%)
					7	3 (0.0020%)

Overview of systematic errors

- Calculate error ratio of each event caused by different waveform models
- Error ratio increases when SNR goes higher
- Generally, systematic error < statistic error, but exceptions exist
- Statistic error decrease when combining multiple events. Could systematic error surpass statistic at some point?

Catalog tests I

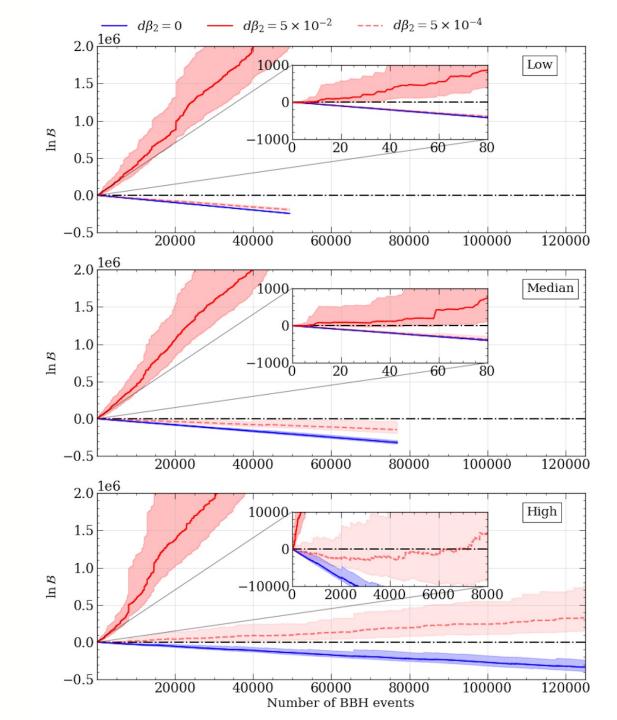

University of Glasgow

Multiplying likelihood (=posterior)

- Posterior of testing parameter is Gaussian
- Multiplying two Gaussian distributions:

 $\sigma_f^2 = rac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}, \qquad \mu_f = rac{\mu_1 \sigma_2^2 + \mu_2 \sigma_1^2}{\sigma_1^2 + \sigma_2^2}.$

- Statistical error ~ N^(-1/2)
- Systematic error ~N^(-1/2+ ε), The ε comes from μ≠0 when multiplying posteriors.
- Error ratio may increase to 1 as number of events increases
- Waveform systematic is more problematic than overlap signals

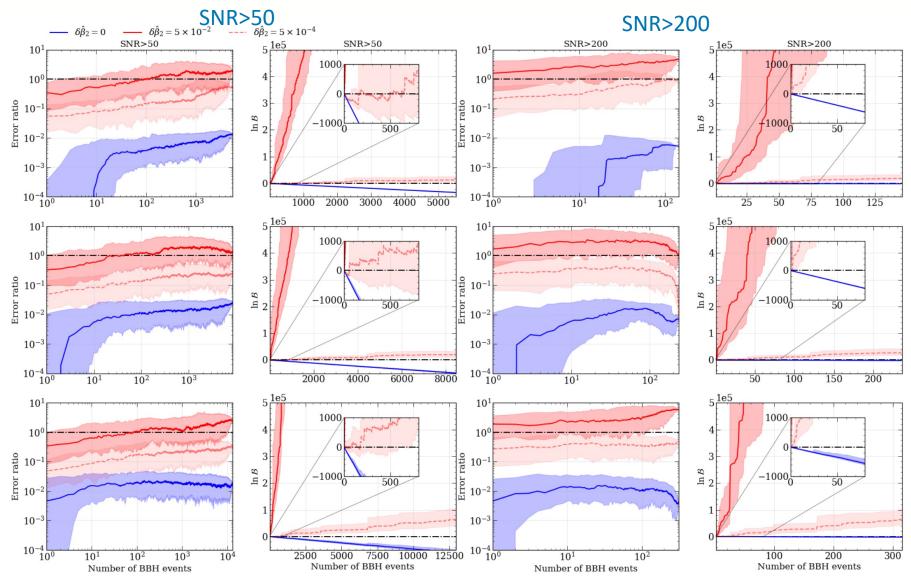

Catalog tests II

Multiplying Bayes factors

 Gaussian posterior. Calculate Bayes factor and multiply BFs of multiple events

$$Z_{\text{nonGR}} \equiv \int d\lambda \, \mathcal{L}(\lambda) Z_{\text{GR}} \equiv \int d\theta \, \mathcal{L}_{\text{GR}}(\theta) \qquad \mathcal{B} \equiv \frac{\Pi}{A} \frac{Z_{\text{nonGR}}}{Z_{\text{GR}}} \rightarrow log B \sim a \, \mu^2 + b$$

- Much faster towards a false deviation, for systematic error appears as quadratic term
- Waveform systematics would deteriorate with the increase of overlap rates (more inaccurate subtractions)



Golden events

Testing GR with selected high SNR and clean events

- SNR>50 or 200 & No detected overlapping signal
- No qualitative difference between different merger rates – as expected
- More vulnerable to systematic errors!

Summary

- Waveform systematic vs (detected/undetected) overlap signals:
 - Detected overlapping signals magnifies waveform systematics errors
 - Overlapping signals do not always exist, it is inaccurate waveform that keeps contributing to systematic error
 - Undetected overlaps are more frequent than the detected! Confusion background
- Catalog tests of GR:
 - Systematic errors do accumulate when we combine results from multiple events
 - Multiplying posteriors and BFs could both lead to false deviations. The latter is more sensitive
 - Golden events are more vulnerable to false deviations: systematic error dominates at high SNR scenario
- The idea of error accumulation is universal: testing GR, cosmology, population inference, EoS of neutron stars, ...