

On the model waveform accuracy of gravitational waves

Qian Hu, John Veitch @ University of Glasgow Apr 4 2022, BritGrav

q.hu.2@research.gla.ac.uk

Overview

□ A new approach to evaluate GW waveform accuracy

- By looking into difference between two waveform models
- Free from the unknown true waveform or numerical relativity (NR) simulations

□ Applied to…

- GWTC-3 and GWTC-2.1 PE samples: How was IMRPhenomXPHM and SEOBNRv4PHM's performance?
- The relation between waveform difference and posterior difference
- Good and bad regions in the parameter space & future accuracy requirements

Assessment of one waveform model

- Can detectors distinguish it from the real one?
- "Accurate enough": the detector can not distinguish it from the real waveform
- Construct such a waveform family for plus polarization: (Lindblom+, Phys. Rev. D 78, 124020, 2008)

 $H_1^+(\lambda) = (1-\lambda)h_0^+ + \lambda h_1^+ = h_0^+ + \lambda \delta h_1^+, \quad 0 < \lambda < 1, \quad \text{h0: real waveform, h1: model waveform}$

• Distinguishing waveforms <=> measuring λ

$$\sigma_{\lambda}^{-2} = \left(\frac{\partial h^+}{\partial \lambda} \mid \frac{\partial h^+}{\partial \lambda}\right) = \left(\delta h_1^+ \mid \delta h_1^+\right). \qquad (a \mid b) = 4 \int_0^{+\infty} \frac{a^*(f)b(f)}{S_n(f)} df_{f_n}$$

- If the error of measuring λ is greater than its domain of definition (also the parametric distance between real and model waveforms), the detector can not distinguish

$$\|\delta h_1^+\|^2 = (\delta h_1^+ | \delta h_1^+) < 1.$$

• It shows: waveform error should lie within a unit ball in the inner-product space

Assessment of waveform pair

- Eliminate the unknown real waveform

 $\|\delta h_1^+\|^2 = (\delta h_1^+ \mid \delta h_1^+) < 1. \qquad \delta h_1^+ = h_1^+ - h_0^+$

- The calculation of δh_1^+ needs the real waveform, which we don't know
- Use Numerical Relativity (NR) simulations as real waveform, but the number of NR simulations is limited
- Introduce another waveform model h_2 , pair it with h_1

$$\Delta^+ = \delta h_1^+ - \delta h_2^+$$

Real waveform is cancelled! $= (h_1^+ - h_0^+) - (h_2^+ - h_0^+)$
 $= h_1^+ - h_2^+.$

• Assume two waveforms are both accurate enough, we have

 $\|\Delta^+\| \le \|\delta h_1^+\| + \|\delta h_2^+\| < 2.$

• If we find $||\Delta^+|| > 2$, at least one of the waveforms is not accurate enough. It's a necessary condition of "a pair of waveform models are both accurate".

Assessment of waveform pair

- An illustration of all possible cases
- If we find $||\Delta^+|| > 2$, at least one of the waveforms is not accurate enough
- Even though we have got $|| \Delta^+ ||$, we don't know the real situation (possibilities are plotted in different line styles.)

Assessment of waveform pair

 $\|\Delta^+\| \le \|\delta h_1^+\| + \|\delta h_2^+\| < 2.$

• Extend to detector response:

 $\|\Delta\| \le \|\delta h_1\| + \|\delta h_2\| < 2(|F_+| + |F_{\times}|).$

• Extend to detector network:

$$\mathbf{C} = (\mathbf{D}|\mathbf{B}) \Rightarrow C_{jk} = \sum_{p=1}^{n} (D_{jp} \mid B_{pk}) \qquad \qquad \|\mathbf{\Delta}_{det}\| = (\delta \mathbf{h}^{\mathbf{T}} \mid \delta \mathbf{h}) = \sum_{k} (\delta h^{(k)} \mid \delta h^{(k)}) \\ = \sum_{k} \left(\Delta^{(k)} \right)^{2} < 2 \sum_{k} (|F_{+}^{(k)}| + |F_{\times}^{(k)}|)$$

• To sum up:

$$\Delta^{'(k)} = \frac{\Delta^{(k)}}{|F_{+}^{(k)}| + |F_{\times}^{(k)}|}, \quad \Delta_{\det}' = \frac{\Delta_{\det}}{\sum_{k} (|F_{+}^{(k)}| + |F_{\times}^{(k)}|)}$$

They should be less than 2 if both models are accurate!

Applying to PE samples

University of Glasgow

- Overview: histograms

- For each event, calculate Δ'_{net} for the mixed posterior samples from IMRPhenomXPHM & SEOBNRv4PHM
- Calculate fraction of $\Delta'_{net} < 2$ samples for each event (right panel)
- There are several events having "worse" performance compared to the others

Applying to PE samples

- Overview: distribution in mass and spins
- Yellow points: Δ_{net} > 2 samples ("bad" samples)
- Purple points: Δ_{net} < 2 samples
- Accuracy becomes worse when mass ratio decreases or spins increase
- Using ∆∝ SNR, for 3rd-gen detectors (SNR 30~1000), the model mismatch from true waveform should be improved by 3-4+ orders of magnitude (consistent with Pürrer+, Phys. Rev. Research 2, 023151)

precession spin - effective spin

Δ'_{net} vs posterior inconsistency

Summary

- A waveform accuracy evaluation approach, free from NR simulations
 - Key idea: if two waveforms have significant difference, they can not be accurate at the same time
 - Drawback: can not determine which one is inaccurate, or both inaccurate

BBH Real events

- Only part of PE samples can pass our assessment; they are in the "illbehaved" regions of parameter space (high spin and unequal mass)
- Waveform difference has correlation with posterior sample consistency
- Future 3rd-gen detectors: accuracy need to be improved 3+ orders of magnitude
- More details: LIGO-G2200415, LIGO-P2200107
- Contact: q.hu.2@research.gla.ac.uk