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Overview

d A new approach to evaluate GW waveform accuracy

By looking into difference between two waveform models
* Free from the unknown true waveform

J Applied to...

« GWTC-3 and GWTC-2.1 PE samples: How was IMRPhenomXPHM and
SEOBNRvV4PHM'’s performance? E.g., did they generate faulty waveforms for
the extreme-mass-ratio event GW191219 1631207

* The relation between waveform difference and posterior difference

» Simulations: Good and bad regions in the parameter space & future accuracy
requirements
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- Can detectors distinguish it from the real one?

« “Accurate enough”: the detector can not distinguish it from the real waveform
« Construct such a waveform family for plus polarization: (Linabiom+, Phys. Rev. D 78, 124020, 2008)

Hil_(/\) = (1—)\)h3_+)\hi*_ = ha_-l-)\(Sh_l'_, 0 <A <1, ho:real waveform, h1: model waveform

* Distinguishing waveforms <=> measuring A

. Oht  OhT +oo ox (£)b(f
o= =5 | = ) = (6hT | 6h7). (a|b>=4/0 énzf())df,

* |If the error of measuring A is greater than its domain of definition (also the
parametric distance between real and model waveforms), the detector can not
distinguish

6k 1> = (ohi | 6hF) < 1.

* |t shows: waveform error should lie within a unit ball in the inner-product space

 Note: when calculating the inner product, we need to minimize it over an
arbitrary phase ¢, and a time shift t,, in order to eliminate the non-physical
difference between models 3
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- A single polarization vs detector response

I6RY11* = (SR | 6RT) < 1.
* We can extend it to the detector response: the radius of the ball is weighted
ho = Fyhd + Fyh 6kl = | E6RT + Fx R 1|

+ < o ||F+5h1*'|| <+ ||FX5hi<|| Triangle inequality in the inner-product space
hi = FyLhy + Fxhj < |Fy| + |Fx|-

* To evaluate the waveform itself: use one polarization (or h, — ihy etc)

 To evaluate the hypothetical signals we used in data analysis, use detector
response:. the waveform errors are weighted by antenna response functions
when projecting waveforms to the detector
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- Eliminate the unknown real waveform
|on 1> = (ki | hi) <1 Shi = hi—hg

 The calculation of §h{ needs the real waveform, which we don’t know

« Use Numerical Relativity (NR) simulations as real waveform, but the number of
NR simulations is limited

* Introduce another waveform model h,, pair it with h,4

At = 5kt — 6h
Real waveform is cancelled! = (h_l*_ — h(-)}_) - (h;_ - hE)i_)

= ht —h}.

« Assume two waveforms are both accurate enough, we have
IATI < [I6hT [l + ll6h3 || < 2.

* If we find || AT || > 2, at least one of the waveforms is not accurate enough. It’s
a necessary condition of “a pair of waveform models are both accurate”.

5
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- An illustration of all possible cases

* If we find || AT || > 2, at least one of the waveforms is not accurate enough

« Even though we have got || A™ ||, we don’t know the real situation (possibilities
are plotted in different line styles. )

Casel: AT > 2 Casell: AT < 2
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IAT( < lohy || + ll6h3 || < 2.
« Extend to detector response:

|A] < |[6h|| + [|0h2|| < 2(|1F4| + |Fx]).

 Extend to detector network:

|Adet|| = (ShT|oh) =) "(6n*)|5hH)
k

n

= (DIB) = Cjt = Y (Djp | Bpk)

2 k k
= =3 (a%)" <23 (50| +1FP).
k k
* To sum up:
/ A(k) Ad
A (k) — A/ e |
% %)) det k & They should be less than 2 if both
FP| + | SRUFE1+ 1P | models are accurate!




Applying to PE samples

- Overview: histograms

« For each event, calculate A,,, for the
mixed  posterior samples  from
IMRPhenomXPHM & SEOBNRv4PHM

- Calculate mean, median of A,,, for
each event (left panel)

« Calculate fraction of A, ,.< 2 samples
for each event (right panel)

- There are several events having
‘worse” performance compared to the
others
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Applying to PE samples

Overview: distribution in mass and spins

Yellow points: A,.,> 2 samples
Purple points: Ay, < 2 samples
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Accuracy becomes worse when mass ratio decreases or spins increase

1.0

0.8

0.6

0.4

0.2

0.0

151226 033853
PPt R y T

R A

\

GW190521 030229
' N I L I R O 1.0"'|

GW200129 065458 GW
| = = I. ,.: J'-%".q.' ».; . |' i 1.0 R [".., TR
- B “;é-? 2 . "
8 : 1 osl
B 1 osl
<
. 1 oal
. 1 o2}
| | | 1 | 1
375 300 325 350 0.0—=%%
M

chirp mass - mass ratio

GW191109 010717
: MEEEE! “ | & =

precession spin - effective spin

1.0



BBH Simulations @ ety | Cacrog

IMRPhenomXPHM and SEOBNRv4PHM

m; = 30M@,q = 1,0.8,0.5,0.2

Spins are randomly generated (isotropic, uniform between 0 and 1)
SNR threshold: SNR when waveform difference reaches upper limit 2
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BBH Simulations

IMRPhenomXPHM and SEOBNRv4PHM
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Waveform accuracy deteriorates as spin goes up or mass ratio goes down

In some cases, SNR threshold drops below 5

Using Ax SNR, for 3"9-gen detectors (SNR 30~1000), the model mismatch from
true waveform should be improved by 3-4+ orders of magnitude (consistent with Piirrer+,

Phys. Rev. Research 2, 023151)
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Applying to O3b PE samples '%ﬁi@%@ | Cacroy

- Two “bad” events in O3b: GW191109 and GW200129 s T 0107”_

GW191109 Xers

0.5}

+ High mass BBH (Mchirp ~ 50Msun) b

* Has the smallest (negative) y.qr in
O3b catalog, “where waveform Lo

differences may be expected” — O3b . A \ A x X ‘3 \
PApPEr, also arXiv:2010.05830, arXiv:2106.06492 -gog_ \ \ \ \
=
 Also has large yxp g ) ‘ \ \ \ H
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Applying to O3b PE samples

- Two “bad” events in O3b: GW191109 and GW200129

GW200129

* The highest SNR in O3b Catalog
(SNR~26.8)

* The highest inferred yp

* PE results showed difference
between two waveform models
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7 ” . 2200F | u" (| CO1:IIMRPhenoImXPHM »
- “Extreme”™-mass-ratio event GW191219 ém_mass ratio -7 S GhilsEoentiin. |
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» The smallest yp in O3b, y.rr= 0.00%305 3 ‘

« Mean value of A,,,,: 1.77 (< 2) :

o Fraction Of A;let <2 Samples: 0.62 0.000 .(I.lij‘) 0.050 . 0.075 l:fi}bo 0.125 0.150 0.175 0.200
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- Waveform performance is “not too bad” A ™ sl

compared to other events sol
@825

« Spin is more problematic than mass ratio A 125}
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Maximum Jensen-Shannon distance
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+  GW190517 055101 »  GW190910 112807
+  GW190519 153544 = GW191109 010717
GW190521 074359 ¢ GW191219 163120
GW190527 092055 GW200105 162426
«  GW190706 222641 GW200129 065458
GW190707 093326 . GW200208 222617

| « Calculate Jensen—Shannon Distance

between IMR and EOB samples

sampIeS of q, Mchirp» Xeff  Xp

| « When the fraction of “good samples’<40%,

the J-S Distance will be larger than most
other events

000 005 010 015 020 025 030° Waveform difference is not the only factor

that can influence posterior consistency
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Summary =

d A waveform accuracy evaluation approach, free from NR

simulations

« Key idea: if two waveforms have significant difference, they can not be
accurate at the same time

 Drawback: can not determine which one is inaccurate, or both inaccurate
« Easy to apply, can be used as quantitative check in PE workflow

] BBH Real events & simulations

* Only part of PE samples can pass our assessment; they are in the “well-
behaved” regions of parameter space (low spin and equal mass)

« Waveform difference has correlation with posterior sample consistency

 Future 3"-gen detectors: accuracy need to be improved 3+ orders of
magnitude 16
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- Normalization & Relations with overlap

« At= (hj — hi|h] — h3), is proportional to the amplitude of GWs. Louder events
tend to have larger A*. We want to eliminate the impact of SNR and investigate
waveform model’s intrinsic performance in some specific parameter regions.

« Normalize A* with SNR (geometric mean of SNRs of two waveforms, i.e. /pipz.)

(hf — h3|hf — h3) Ad N
N RIS 1 Adwnmpoll = poll Adina |

| Adwr=ill® =

« Compared to overlap which is widely-used in the waveform community

(hi|h2) 9 P1 Pz .
; 1A 1= "% + =2 —20(h{, )
NG SRS o2 gt a7

« AT analysis is consistent with overlap method. But A* has a clear upper limit 2.

O(h1, ho) = R

18
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IMRPhenomNSBH and SEOBNRv4_ROM_NRTidalv2_NSBH

» my, = 1.4Mg), q € [0.02,0.25],A, € [0,2000] | Isﬁﬁlt{lgéﬁhélézo -

* We assume zero-spin, as both models are 2000
calibrated with non-spin simulations

1750
1500

1250
« Compared to matter effects, mass ratio has

more impacts on waveform accuracy

« Waveform accuracy should also be improved
for future high SNR observations , or when 500
more complex physical effects are included
(spins, higher modes or eccentricity etc)
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BNS simulations

IMRPhenomPv2_NRTidalv2 and SEOBNRv4T _surrogate
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My =My = 14M®'Sl — SZ'Al — AZ 20 10 SNRthléedc,hold 50 100
* Aligned spin |S1] < 0.2, A € [0,2000] —

« Two waveform models agree with each other
quite well in A < 500, |S| < 0.05, this is the
region that coincides with our current
knowledge of neutron star

« Waveform accuracy should be improved for
future high SNR observations, or when more
complex physical effects are included (high
spin scenario, precession effects etc)

500 1000 1500 2000
A
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