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Where are we?

Gravitational Wave Astronomy

Astrophysics

Cosmology

Gravity
theories

Dense stars,
black holes

Other new
physics…

Multi-
messenger

Theory
Experiment

(Observation)
Data Analysis

………………………………………………………………………………….........We are here!



Course Goals
We are trying to understand…

• The statistical
behaviors of noises
in GW detectors

• How to detect CBC
signals

• How to estimate the
source properties of
CBC signals

Source types

!7!7

Compact Binary 

Coalescence

StochasticContinuous

Burst

modelled& unmodelled&

short&

long&



Understanding the noise



The data looks like…
The first detection: GW150914

What the public see
arXiv:1602.03837

Raw data
arXiv:1908.11170



Noise
Generic description

• GW detector noise is a series of unknown fluctuations n in the detector output d 
caused by the various noise sources. 

• It is added linearly to GW signal h: 𝑑 𝑡 = ℎ 𝑡 + 𝑛 𝑡 , or in frequency domain,
ሚ𝑑 𝑓 = ෨ℎ 𝑓 + 𝑛(𝑓)

• Mathematically, 𝑛 𝑡 is a stochastic process. We don’t know precisely the values 
of 𝑛 𝑡  so we describe it statistically: mean and correlations.

• 𝑛 𝑡 = {𝑛 𝑡1 , 𝑛 𝑡2 , … }

• Mean: zero. < 𝑛(𝑡𝑖 > = 0,

• Correlation: Autocorrelation function 𝐶 𝑛(𝑡𝑖 , 𝑛(𝑡𝑗)) = < 𝑛(𝑡𝑖)𝑛(𝑡𝑗) >

Fourier transform: time domain -> frequency domain



Noise
Simplification 1: Stationary

• Autocorrelation function C 𝑛(𝑡𝑖 , 𝑛(𝑡𝑗)) = < 𝑛(𝑡𝑖 , 𝑛(𝑡𝑗) >

• Stationary: If the autocorrelation function of the noise depends only on time
distance 𝑡𝑖 − 𝑡𝑗, we say it is a stationary noise process

• Noise characteristics do not change over time

• 𝜏 = 𝑡𝑖 − 𝑡𝑗. The autocorrelation function becomes 𝐶𝑛 𝜏 =< 𝑛 𝑡 𝑛(𝑡 + 𝜏) >

• Wiener–Khinchin theorem: The Fourier transform of 𝐶𝑛 𝜏  is power spectral

density (PSD) 𝑆𝑛 𝑓 . 𝑆𝑛 𝑓 = 
−∞

+∞
𝐶𝑛 𝜏 𝑒−2𝜋𝑖𝑓𝜏𝑑𝜏

• Real noise is not stationary! However, it is a good 

approximation for short duration signals Amplitude Spectral

Density (ASD): 𝑆𝑛 𝑓 .



Noise
Simplification 2: Gaussian

• Autocorrelation function C 𝑛(𝑡𝑖 , 𝑛(𝑡𝑗)) = < 𝑛(𝑡𝑖 , 𝑛(𝑡𝑗) >

• Gaussian: The noise follows Gaussian distribution

• Let 𝑛𝑖 = 𝑛 𝑡𝑖 , 𝑛 = 𝑛𝑖 , 𝐶𝑖𝑗 = 𝐶(𝑛 𝑡𝑖 , 𝑛(𝑡𝑗)), we have

• Computing 𝐶𝑖𝑗 and its inverse is expensive. 

• Under Stationary+Gaussian assumption, noise is uncorrelated in frequency 
domain! Let 𝑛𝑘 = 𝑛 𝑓𝑘 , 𝑆𝑘 = 𝑆𝑛 𝑓𝑘 , T=duration of data= 1/(𝑓𝑘+1 − 𝑓𝑘)

• Here we define inner product between two time/frequency series

• Gaussian assumption is far from the truth…

• There are many transient noises (glitches) 

• Identifying and removing glitches is an important task



The data now looks like…

Window: Apply a window function to smooth the edge for Fourier 
transform

Whiten: in frequency domain, divide the data with the noise 
standard deviation

Bandpass: in frequency domain, truncate the frequencies you don’t 
want. Only target frequencies remain. In this example 50-350Hz.

Zoom in and compare with waveform template. Now you can win 
the Nobel pri…
…Wait, how did we get the waveform template that matches the 
data?



Detection



• We want to know whether signal h is present in data d or not

• Null hypothesis H0: There is no signal present in the data. d=n

• Alternative hypothesis H1: There is a signal h present in the data. d=h+n

• What could go wrong?

• Type I error (missed detection): H1 is true but we mistakenly choose H0

• Type II error (false alarm): H0 is true but we mistakenly choose H1

• False alarm is more harmful! We want to avoid it

• Neyman-Pearson lemma: the likelihood ratio test is the optimal test for binary 
hypothesis since it minimizes the missed detection probability for a given false alarm 
probability

• We want to maximize the likelihood ratio

• Since (h|h) is a constant given a template, the (d|h) is the only term to decide 
whether h is present, and the likelihood ratio increases monotonically with it

• It implies that (d|h) is relevant to the optimal detection statistic: if it exceeds a 
certain threshold, we may reject H0 and assert the detection of a signal.

Matched filtering: Why



Matched filtering: How

• (d|h) is relevant to the optimal detection statistic

• It is the inner product between the data d and template waveform h. The more 
similar d and h are, the larger (d|h) will be. – This is matching d and h.

• From the signal processing view, (d|h) is using h as the filter function to filter data 
d. -> “Matched filtering”

• We prepare a template bank that contains a lot of (>1e5) templates, and match all 
of them with the data

• Define the matched filtering signal-to-noise ratio (SNR):

• Here (d|h) measures of the loudness of the signal, (h|h) measures the variance of
the noise: <(n|h)(n|h)> = (h|h)

• The templates that give high SNR (and surpass a threshold) are the potential 
signal templates -> obtain initial estimates of masses, spins etc from the template

• It is proven that matched filtering (i.e., using h as the filter) is the optimal filter that 
maximizes the SNR defined by any filter (d|K)/√(K|K)



Other statistics
Beyond matched filtering

• Due to non-Gaussian noises, matched filtering will select much more candidates
than there actually are.

• We construct other ranking statistics to further select candidates. To name a few

• 𝝌𝟐 test

• Construct variables that follows 𝜒2 distribution *if* the noise is Gaussian.

• Large 𝜒2 value implies non-Gaussianities in the data

• Coincidence test

• A true signal must arrive all detectors in a narrow

time window (max dt = distance between detectors / c)

• False alarm rate (FAR): shifting data from one detector so that any 
coincidences from possible signals can no longer occur and count 
coincidences again, then count how rare the new event is

• Astrophysical origin 𝒑𝒂𝒔𝒕𝒓𝒐

• Given current astrophysical model for CBC and detector sensitivity, how
likely the source is astrophysical?



If we are on duty today…
Trigger
name

Component 
masses in 

M_sun

SNR
(Usually 

should >8)

Chi-square
[m-√m, m+√m],

for m+1
detectors.

Assume m=2

False alarm rate
(High significance:

<1e-2 per year.
Acceptable: <2

per year)

p_astro
(usually 

should >0.5)

Our decision

Trigger 1 1.4+1.4 6 1.9 1e-1 per year 1.00

Trigger 2 34+29 26 0.8 <1e-5 per year 0.99

Trigger 3 25+14 14 5.4 1 per month 1.00

Trigger 4 31+1.2 9 1.3 1e-1 per year 0.49

Disclaimer: 1). I made up the data. The procedure of real detection pipeline is shown in Appendix. 2). Some trigger shouldn’t be called trigger because our search pipeline is
smart enough to veto them. 3). In addition to data analysts, you should also consult people monitoring the detector.

Not loud enough

A binary black
hole event

Glitch

Worth 
investigating



Unmodeled search

• Matched filtering only works when we have waveform templates. This is not
always the case! Unmodelled signals, parameter space not covered by the
template bank…

• It is possible to search for GWs only using the coherence between detectors:
examine time and space coherence between detectors

• Pro: unmodeled.

• Con: Not sensitive to long signals, less sensitive than modeled search (if
models are correct…), need at least 2 detectors

• In fact, the first GW detection GW150914 is detected by unmodeled search –
the source (36+29 Msun) is much heavier than astrophysicists expected so they
did not prepare template for that high mass…



Parameter estimation



Parametrizing compact binaries
Intrinsic parameters

• GW waveform is determined by
the source properties (8+ intrinsic
parameters)

• Component masses (𝑚1, 𝑚2, or
reparametrized as chirp mass
and mass ratio ℳ =

(𝑚1𝑚2)3/5

(𝑚1+𝑚2)1/5 , 𝑞 =
𝑚2

𝑚1
)

• Component spins ( റ𝑆1 , റ𝑆2, these
are 6 parameters!)

• For neutron stars, tidal
deformability parameters
(Λ1, Λ2)

• Orbital eccentricity (𝑒+orbital
anomaly)



Parametrizing compact binaries
Extrinsic parameters

• GW signal is the projection of waveform polarizations to the detector:

• 𝐹+,×= 𝐹+,×(𝛼, 𝛿, 𝜓, 𝑡𝑐) are antenna response functions

• 𝛼, 𝛿: right ascension, declination angles

• 𝜓: polarization angle

• 𝑡𝑐: coalescence time

• Other extrinsic parameters:

• 𝑑𝐿: luminosity distance

• 𝜄: inclination angle: angle between line of sight of observer

and binary orbit normal

• 𝜙𝑐: coalescence phase

• 7 extrinsic parameters. 15+ parameters in total!

ℎ 𝑡 = 𝐹+ℎ+ 𝑡 + 𝐹×ℎ×(𝑡)

𝐹+ 𝐹×



• Parameter estimation: given observation data 𝒅, we want to know the probability
distribution of source parameter 𝜽.

• Bayes theorem: we can update our knowledge after a new observation

• Set H, the model of the source. For example, the CBC waveform model h.

• Start from our knowledge before any observation: a prior distribution: e.g.
source location isotropic on the sky, chirp mass uniform between 1.1 and 2
solar mass.

• Use the observation d to update our knowledge – likelihood

• Evidence: a normalization constant that can be ignored during parameter
estimation, and reconstructed afterwards. Useful in model selection (a
preferred model H should have a greater evidence)

• The posterior probability represents the state of our knowledge of the model 
(“the truth”) in light of our observed data

Bayes theorem

𝑝 𝑑 𝜃 ∝ 𝑒−
1
2

(𝑛|𝑛) = 𝑒−
1
2

(𝑑−ℎ(𝜃)|𝑑−ℎ(𝜃))

Likelihood: Subtracting the signal you get noise left



Examples

Flat prior -> Posterior = Likelihood Wrong prior -> wrong posterior



Stochastic sampling
How to obtain posterior distribution

• Parameter space of CBC is at least 15 dimensions. Impossible to calculate
likelihood at all places.

• Stochastic sampling: randomly sampling points in the parameter space (prior
space), and keep high-likelihood points.

• Markov Chain Monte Carlo (MCMC) and Nested sampling are two widely used
sampling algorithms.

• Very computational expensive! Takes hours – weeks.



Stochastic sampling

22

MCMC and Nested sampling

• Markov Chain Monte Carlo (MCMC)
• A set of random walkers

• Walkers make the next step with the probability determined by 
target probability distribution (posterior)

• For example, your walker is now at 𝜽 with probability p(𝜽|𝒅)

• You randomly choose a nearby point 𝜽′ and calculate p(𝜽′|𝒅)

• Accept 𝜽′ (i.e., let new 𝜽 = 𝜽′) by the probability min{1,
p 𝜽′ 𝒅
p 𝜽 𝒅

}

• Walkers’ trace will converge to posterior distribution

• Nested sampling
• A set of live points generated from prior distributions. 

• The point with the lowest likelihood will be abandoned and the new 
samples with higher likelihood will be generated. 

• Repeat this until there is little new information each iteration

• In the end, those live points will be mapped to posterior samples.



Posterior distribution
How do we interpret it?

• Visualizing the multi-dimensional
distribution by corner plot

• We can read estimates of each parameters

• How heavy are they?

• Are they spinning?

• Follow-up science (cosmology,
population inference …)

• We can see degeneracy (correlation)
between parameters

Degeneracy between m1 and m2
Using chirp mass and mass ratio can
relieve this degeneracy.

Degeneracy between distance
and inclination angle. They
both influence the GW
amplitude

Mass ratio

Effective spin



Summary

• Data analysis is the bridge connecting observation and theory

• Noise model:

• Stationary and Gaussian assumption and when they are invalid

• Gaussian likelihood

• Detection:

• Matched filtering = maximum likelihood ratio, is the optimal filter

• We need a huge template bank to perform matched filtering search

• Other statistics is required to select real signal

• Unmodeled search is possible

• Parameter estimation

• Intrinsic parameters and extrinsic parameters

• Bayesian inference and stochastic sampling

• How to interpret parameter estimation results



What we didn’t cover & further readings

1. LSC, Observation of Gravitational Waves from a Binary Black Hole Merger, https://arxiv.org/abs/1602.03837

• First GW detection paper GW150914 (including a description of unmodeled search)

2. LVC, A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals.
https://arxiv.org/abs/1908.11170

• This is a comprehensive review, ranging from instrument to detection and parameter estimation!

• How matched filtering search deals with extrinsic parameters (phase, time etc). Template bank actually only
includes intrinsic parameters!

• What ranking statistics are used for detection.

3. Eric Thrane, Colm Talbot, An introduction to Bayesian inference in gravitational-wave astronomy: Parameter 
estimation, model selection, and hierarchical models. https://arxiv.org/abs/1809.02293

• An excellent review of Bayesian inference in GW astronomy.

4. GW open data workshop. https://gwosc.org/s/workshop4/program.html

• If you want to play with real data, check out GW open data workshop! Python skills required.

5. Curt Cutler and E ánna E. Flanagan, Gravitational Waves from Merging Compact Binaries: How Accurately Can 
One Extract the Binary‘s Parameters from the Inspiral Waveform? https://arxiv.org/abs/gr-qc/9402014v1

• Fisher matrix – a powerful, widely-used tool to predict the precision of parameter estimation without running
expensive stochastic sampling. We do not have time to cover this in our lecture. 

6. Lee Finn, Detection, Measurement and Gravitational Radiation. https://arxiv.org/abs/gr-qc/9209010

• Mathematical derivation of noise likelihood that we skipped in the lecture. Read if you are interested.
1,2,3,4,5 will be very useful especially if you have a research project on the relevant topic. Choose one or two to read☺

https://arxiv.org/abs/1602.03837
https://arxiv.org/abs/1908.11170
https://arxiv.org/abs/1809.02293
https://gwosc.org/s/workshop4/program.html
https://arxiv.org/abs/gr-qc/9402014v1
https://arxiv.org/abs/gr-qc/9209010
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